Key Concept 1: Structure of DNA

Learning Objectives

Students will be able to ...

Race to Discover DNA

GEN 1.1(a) Explain how models of DNA changed over time as new scientific evidence emerged, resulting in the final consensus model.

Essential Knowledge

Students need to know that ...

GEN 1.1.1 Several scientists' models of DNA contributed to the final consensus model of DNA's structure produced by Watson and Crick.

- Chargaff observed 1:1 ratios between certain nitrogenous bases in DNA's nucleotides (A-T, G-C).
- **b.** Franklin's work showed that DNA was in the shape of a helix and suggested that the nitrogenous bases were near the center.
- c. Watson and Crick built the consensus model of DNA known today.

The Structure of DNA

GEN 1.2(a) Describe how DNA is organized differently in prokaryotes and eukaryotes.

GEN 1.2(b) Describe the monomers necessary for cells to build DNA.

GEN 1.2(c) Explain how the structure of DNA enables storage of heritable information.

GEN 1.2.1 Living systems obtain the monomers necessary to build DNA strands using products from metabolic reactions.

GEN 1.2.2 DNA is the genetic material found in all living organisms.

- **a.** In prokaryotes, genomic DNA is organized into a single, circular chromosome.
- **b.** In eukaryotes, genomic DNA is organized into multiple, linear chromosomes found in the nucleus.
 - DNA is a double helix with the two strands running in opposite directions (antiparallel).
 - Nitrogenous base pairing occurs in between the two strands, each of which contains a sugar– phosphate backbone.

Content Boundary: Quizzes will not require students to recall a list of scientists and their contributions to the discovery of the structure of DNA. The *focus* here is on how scientific knowledge (e.g., work from Pauling, Chargaff, Franklin and Watson, and Crick) developed over time, finally leading to the understanding of the consensus model of DNA.

Cross Connections: *Connect key concepts* from the cycling of matter in the biosphere (Unit 1: Ecological Systems) and the chemistry of life (Unit 3: Cellular Systems) to help students understand where the building blocks to make these nucleic acids (both DNA and RNA) come from.